ЭЛЕМЕНТНЫЙ СОСТАВ ГОРЦЕВ ПОЧЕЧУЙНОГО И ПЕРЕЧНОГО

А.А. Мальцева^{1*}, канд. фарм. наук, **А.С. Чистякова**¹,

А.А. Сорокина², докт. фарм. наук, профессор, **А.И. Сливкин**¹, докт. фарм. наук, профессор

Воронежский государственный университет;

394006, Воронеж, Университетская пл., д. 1

²Первый Московский государственный медицинский университет им. И.М. Сеченова;

119991, Москва, Трубецкая ул., д. 8, стр. 2

*E-mail: alinevoroneg@mail.ru

С помощью метода хромато-масс-спектроскопии установлен элементный состав травы горца почечуйного и травы горца перечного, собранной в окрестностях Воронежа. Выявлено различие в составе элементов травы горцев и почвы с места произрастания растений, рассчитаны коэффициенты биологического поглощения веществ в них.

Ключевые слова: горец почечуйный, Polygonum persicaria L., горец перечный, Polygonum hydropiper L., трава, элементный состав, хромато-масс-спектроскопия.

Семейство гречишные (Polygonaceae), относится к отделу Magfloliophyta, классу Magnolyopsida, подклассу Caryophyllidae, надпорядку Polygonanae, монотипному порядку гречихоцветные (Polygonales) и включает 35 родов и свыше 1000 видов. Род горец (Polygonum L.), насчитывает до 300 видов широко распространенных растений [1, 2]. В Государственную фармакопею РФ XIII издания включены 4 вида: горец змеиный — Polygonum bistorta L., горец почечуйный — Polygonum persicaria L., горец птичий — Polygonum aviculare L., горец перечный — Polygonum hydropiper L. Горцы почечуйный и перечный, встречающиеся практически на одной территории, обладают сходными морфологическим строением и фармакологическим эффектом.

Минеральные вещества как компонент химического состава лекарственных растений (ЛР) допол-

няют и усиливают их лечебное воздействие на организм. Баланс макро- и микроэлементов в ЛР формируется в результате сложных механизмов концентрирования и аккумулирования этих веществ, на которые влияют различные факторы, в том числе видовая специфичность растения.

Цель настоящей работы — сравнительный анализ элементного состава травы горца почечуйного и травы горца перечного.

Экспериментальная часть

Объектами исследования служили образцы высушенной травы горца почечуйного и горца перечного, заготовленной в окрестностях Воронежа, а также почва с места произрастания этих растений.

Микроэлементный состав изучаемого лекарственного растительного сырья (ЛРС) и почвы определяли методом хроматомасс-спектроскопии (ХМС) с индуктивно связанной плазмой на приборе «ELAN-DRC». Метод ХМС позволяет разделить и идентифицировать биологически активные вещества (БАВ), присутствующие в ЛРС в малых количествах. Предварительно образцы измельченного ЛРС подвергались кислотному разложению с использованием систем микроволновой пробоподготовки.

Установлено, что образцы ЛРС содержат широкий спектр элементов (табл.1). Использованный ХМС-метод анализа позволил выявить в траве горца почечуйного 60 элементов (из 62 возможных, МУК 4.1.1483-03), в траве горца перечного -59 элементов, в почве -55 элементов из 59 возможных (МВИ №002-ХМС-2009; ФР.1.31.2010.06997).

Определенные элементы были объединены в 4 группы: макроэлементы, микроэлементы, ультрами-кроэлементы и тяжелые металлы (табл. 2). Выявлено, что трава горца почечуйного и трава горца перечного имеют незначительные различия в количественном содержании макроэлементов и существенные различия в содержании микроэлементов. Так, в траве горца

Таблица 1 СОДЕРЖАНИЕ МАКРО- И МИКРОЭЛЕМЕНТОВ В ТРАВЕ ГОРЦЕВ ПОЧЕЧУЙНОГО И ПЕРЕЧНОГО И ПОЧВЫ С МЕСТА ИХ ПРОИЗРАСТАНИЯ

№	2	Содержание, %				
145	Элемент	трава горца почечуйного	трава горца перечного	почва		
1	Алюминий (Al)*	0,002314	0,004461	4,92		
2	Барий (Ва)**	0,00277	0,00129	0,03864		
3	Бериллий (Ве)	<0,001	<0,001	0,000151		
4	Бор (В)**	0,001217	0,002396	_		
5	Бром (Вг)**	0,0118	0,0618	_		
6	Ванадий (V)	0,0000249	0,0000427	-		
7	Висмут (Ві)	0,000000379	0,00000047	0,0000208		
8	Вольфрам (W)	0,00000064	0,00000137	0,00015		
9	Гадолиний (Gd)	0,00000044	0,0000014	0,00054		
10	Галлий (Ga)	0,0000068	0,00001	0,00137		
11	Гафний (Hf)	0,000000088	0,00000023	0,00032		
12	Германий (Ge)	0,000000177	0,00000075	0,000173		
13	Гольмий (Но)	0,000000074	0,00000016	0,000069		
14	Диспрозий (Dy)	0,00000037	0,00000088	0,00037		
15	Европий (Eu)	0,00000013	0,00000033	0,000104		
16	Железо (Fe)**	0,01556	0,02288	2,729		
17	Золото (Аи)	0,00000044	<0,001	<0,000001		
18	Йод (I)**	0,000204	0,000192	_		
19	Индий (In)	-	_	<0,000001		
20	Итрий (Ү)	0,0000018	0,0000047	0,00189		
21	Иттербий (Yb)	0,00000013	0,00000038	0,000191		
22	Кадмий (Cd)***	0,00000314	0,00000138	0,0000167		
23	Калий (К)*	2,0672	1,5378	1,54		
24	Кальций (Са)*	0,7001	1,3947	1,42		
25	Кобальт (Со)**	0,0000302	0,000085	0,0014		
26	Лантан (La)	0,0000029	0,0000055	0,00277		
27	Литий (Li)	0,0000181	0,0000121	0,0029		
28	Лютеций (Lu)	0,000000031	0,000000018	0,0000288		
29	Магний (Mg)*	0,4835	0,8272	0,755		
30	Марганец(Мп)**	0,0146	0,0594	0,042		
31	Медь (Cu)**	0,000663	0,000654	0,00317		
32	Молибден (Мо)**	0,0000265	0,000064	0,000098		
33	Мышьяк (As)***	0,0000138	0,0000198	0,00066		

Продолжение табл. 1

Nº	Элемент	Содержание, %				
245		трава горца почечуйного	трава горца перечного	почва		
34	Натрий (Na)*	0,001496	496 0,002837			
35	Неодим (Nd)	0,0000027	0,0000055	0,00254		
36	Никель (Ni)	0,0000433	0,0000344			
37	Ниобий (Nb)	0,00000023 0,00000083		0,00124		
38	Олово (Sn)	0,0000041	0,0000051	0,000216		
39	Платина (Pt)	<0,0001	<0,0001	_		
40	Празеодим (Рг)	0,00000071	0,0000015	0,00069		
41	Рений (Re)	_	-	<0,000001		
42	Р туть (Hg)***	0,00000044	0,00000091	0,00000126		
43	Рубидий (Rb)	0,00329	0,00456	0,0079		
44	Самарий (Sm)	0,00000029	0,0000012	0,00051		
45	Свинец (Pb)***	0,0000175	0,0000202	0,00174		
46	Селен (Se)**	0,000299	0,000266	0,001		
47	Серебро (Ад)	0,0000014	0,00000035	0,0000239		
48	Скандий (Sc)	0,000069	0,000065	-		
49	Стронций (Sr)**	0,004321	0,00585	0,0107		
50	Сурьма (Sb)	0,00000077	0,00000091	0,000083		
51	Таллий (Tl)	0,00000055	0,00000041	0,00004		
52	Тантал (Та)	0,000000061	0,000000061	0,000094		
53	Теллур (Те)	_	-	<0,0001		
54	Тербий (Tb)	0,00000013	0,00000017	0,000076		
55	Титан (Ті)	0,000145	0,000511	0,415		
56	Торий (Th)	0,00000083	0,0000016	0,00088		
57	Тулий (Tm)	0,000000016	0,000000056	0,000029		
58	Уран (U)	0,00000027	0,00000069	0,000158		
59	Фосфор (Р)*	0,5362	0,4522	0,0549		
60	Хром (Сг)**	0,000372	0,000318	0,0108		
61	Цезий (Cs)	0,000003	0,0000037	0,00041		
62	Церий (Се)	0,000006	0,000013	0,0059		
63	Цинк (Zn)**	0,002993	0,003331	0,0101		
64	Цирконий (Zr)	0,000004	0,0000092	0,0139		
65	Эрбий (Ег)	0,00000013	0,0000003	0,000236		

Примечание. * — макроэлементы, ** — микроэлементы, *** — тяжелые металлы.

Таблица 2 СОДЕРЖАНИЕ ГРУПП ЭЛЕМЕНТОВ В ИЗУЧАЕМЫХ ОБЪЕКТАХ

Character a reasonmen	Co	держание элементов,	%		
Группа элементов	горец почечуйный	горец перечный	почва		
Макроэлементы	98,48	96,26	73,62		
Микроэлементы	1,42	3,61	22,67		
Ультрамикроэлементы	0,10	0,13	3,70		
Тяжелые металлы	0,001	0,001	0,02		

перечного в 2,5 раза преобладают микроэлементы. Количественное содержание групп элементов в почве также отличается от содержания в ЛРС. В траве горцев содержится значительно меньше ультра- и микроэлементов по сравнению с содержанием их в почве. Такая же ситуация наблюдается и с тяжелыми металлами, которых в почве почти в 10 раз больше, чем в самих растениях.

Элементный состав изучаемых объектов различается не только по количественным, но и по качественным характеристикам. Трава горца почечуйного отличается высоким содержанием следующих элементов: алюминия, бария, бора, брома, железа, йода, калия, кальция, магния, марганца, меди, натрия, рубидия, селена, стронция, титана, фосфора, хрома, цинка. В траве горца перечного отмечено высокое содержание бора, брома, железа, калия, кальция, магния, марганца, натрия, титана, фосфора, цинка. В почве установлено присутствие алюминия, железа, кальция, калия, магния, натрия, титана. Различия в составе групп элементов в почве и ЛРС можно объяснить тем, что горцы относятся к однолетним растениям и за вегетационный период не способны накопить большое количество микро-, ультрамикроэлементов и тяжелых металлов.

Чтобы установить, накапливает ли ЛР те или иные элементы, были рассчитаны коэффициенты биологического поглощения (Кбп). Кбп – это отношение содержания химических элементов в зоне организмов (растений, животных) к его содержанию в среде обитания [3]. Кбп позволяет косвенно судить о степени доступности элемента для растений и его поведении в системе «почва растение». Расчет Кбп проводился по А.И. Перельману. Согласно А.И. Перельману, к энергично накапливаемым элементам относятся те, что накапливаются в количестве $n \cdot 10-n \cdot 10^2$, сильно накапливаемым элементам — $n \cdot 10^0-n \cdot 10^1$, к группам слабого накопления и среднего захвата — $n \cdot 10^{-1}-n \cdot 10^0$, группе слабого захвата — $n \cdot 10^{-1}$, группе слабого захвата — $n \cdot 10^{-1}-n \cdot 10^{-2}$ [3—5].

К элементам, энергично накапливающимся в траве горца почечуйного и траве горца перечного, следует отнести Ca, K, Mg, Mn, Cu, Mo, Hg, Rb, P, Zn, Se, Sr (табл. 3). К группе элементов сильного накопления в траве горца почечуйного относятся Co, As, Ni, Sn, Pb, Ag, Tl, Su, в траве горца перечного — Ba, Bi, Cd, Co, As, Ni, Sn, Pb, Ag, Su. Элементами слабого накопления и

среднего захвата в траве горца почечуйного и траве горца перечного являются Fe, Na, Nd, U, Ce, и др. Остальные элементы — вещества слабого накопления и очень слабого захвата и не накапливаются в растении.

Вывод

Методом хромато-масс-спектроскопии установлен элементный состав травы горца почечуйного и травы горца перечного. Выявлено различие в составе элементов травы горцев и почвы с места их произрастания, рассчитаны коэффициенты биологического поглощения веществ в растениях.

Таблица 3 КОЭФФИЦИЕНТ БИОЛОГИЧЕСКОГО ПОГЛОЩЕНИЯ ЭЛЕМЕНТОВ ТРАВОЙ ГОРЦЕВ ИЗ ПОЧВЫ С МЕСТА ПРОИЗРАСТАНИЯ

N₂	Элемент	Коэффициент биологического поглощения		№	Элемент	Коэффициент биологического поглощения	
		горец почечуйный	горец перечный			горец почечуйный	горец перечный
1	Алюминий (Al)****	0,00047	0,09067	28	Неодим (Nd)***	0,10629	0,21653
2	Барий (Ва)	0,07169****	3,33851**	29	Никель (Ni)**	2,22051	1,76410
3	Висмут (Ві)	0,01822****	2,25961**	30	Ниобий (Nb)****	0,01855	0,06693
4	Вольфрам (W)	0,00426****	0,91333***	31	Олово (Sn)**	1,89815	2,36111
5	Гадолиний (Gd)	0,00081****	0,25926***	32	Празеодим (Рг)***	0,10289	0,21739
6	Галлий (Ga)	0,00496****	0,72993***	33	Ртуть (Hg)*	34,92063	72,2222
7	Гафний (Hf)****	0,00027	0,07187	34	Рубидий (Rb)*	41,64557	57,72152
8	Германий (Ge)	0,00102****	0,43353***	35	Самарий (Sm)	0,05686****	0,23529***
9	Гольмий (Но)	0,00107****	0,23188***	36	Свинец (Pb)**	1,00575	1,16092
10	Диспрозий (Dy)	0,00100****	0,23784***	37	Селен (Se)*	29,90000	26,60000
11	Европий (Еи)***	0,12500	0,31731	38	Серебро (Ag)**	5,8577	1,46443
12	Железо (Fe)***	0,57017	0,83840	39	Стронций (Sr)*	40,38318	54,67289
13	Итрий (Ү)	0,09524****	0,24868***	40	Сурьма (Sb)**	0,92771	1,09638
14	Иттербий (Yb)	0,06806****	0,19895***	41	Таллий (Tl)**	1,37500	1,02500
15	Кадмий (Cd)	18,80239*	8,26347**	42	Тантал (Та)****	0,06489	0,06489
16	Калий (К)*	134,23377	99,85714	43	Тербий (Tb)***	0,17105	0,22368
17	Кальций (Са)*	49,30282	98,21831	44	Титан (Ті)	0,03494***	0,12313***
18	Кобальт (Со)**	2,15714	6,07143	45	Торий (Th)	0,09432****	0,18182***
19	Лантан (La)***	0,10469	0,19855	46	Тулий (Тт)	0,05517****	0,19310***
20	Литий (Li)****	0,00624	0,00417	47	Уран (U)***	0,17088	0,43671
21	Лютеций (Lu)	0,10764***	0,06250****	48	Фосфор (Р)*	976,68488	823,67941
22	Магний (Mg)*	64,03973	109,56291	49	Хром (Сг)**	3,44444	2,94444
23	Марганец (Мп)*	34,76190	141,42857	50	Цезий (Cs)***	0,73171	0,90243
24	Медь (Си)*	20,91483	20,63091	51	Церий (Ce)***	0,10169	0,22033
25	Молибден (Мо)*	27,04082	65,30612	52	Цинк (Zn)*	29,63366	32,98019
26	Мышьяк (As)**	2,09091	3,00000	53	Цирконий (Zr)****	0,02877	0,06619
27	Натрий (Na)***	0,27101	0,51395	54	Эрбий (Ег)	0,05508****	0,12712***

Примечание.* — энергично накапливаемые элементы, ** — сильно накапливаемые элементы, *** — элементы слабого накопления и среднего захвата, **** — элементы слабого накопления и очень слабого захвата.

Фармацевтическая химия и фармакогнозия

ЛИТЕРАТУРА

- 1. Тахтаджян А.Л. Система магнолиофитов. Л.: Наука, 1987; 439.
- 2. Кьосев П.А. Лекарственные растения: самый полный справочник. М.: Эксмо, 2011; 944.
- 3. Минкина Т.М., Бурачевская М.В., Чаплыгин В.А. Накопление тяжелых металлов в среде почва растение в условиях загрязнения. Научный журнал Российского НИИ проблем мелиорации, 2011; 4(04):1–17.
 - 4. Перельман А.И. Геохимия ландшафта. М.: Высшая школа, 1975; 392.

5. Комарова Н.В., Морозова О.В. Способ определения ароматических альдегидов и фенолкарбоновых кислот в коньяках, коньячных спиртах и выдержанных винах методом капиллярного электрофореза. Пат. 2350939 РФ, МПК G01N27/26. Заявитель и патентообладатель – ООО «ВИНТЕЛ» (Воронеж). № 2007132862/28; заявл. 24.08.2007; опубл. 27.03.2009.

Поступила 16 июля 2015 г.

ELEMENTAL COMPOSITION OF LADY'S THUMB (POLYGONUM PERSICARIA) AND WATER PIPER (POLYGONUM HYDROPIPER)

A.A. Maltseva¹, PhD; A.S. Chistyakova¹; Professor A.A. Sorokina², PhD; Professor A.I. Slivkin¹, PhD

¹Voronezh State University; 1, Universitetskaya Sq., Voronezh 394006

²I.M. Sechenov First Moscow State Medical University; 8, Trubetskaya St., Build. 2, Moscow 119991

SUMMARY

Mineral substances as a component of the chemical composition of medicinal plants complement and enhance their therapeutic effect on the body. Balance of macro- and microelements in the plant is formed as a result of complex mechanisms for the concentration and accumulation of these substances that are influenced by different factors, including the species-specificity of the plants. Chromatography-mass spectroscopy established the elemental composition of lady's thumb (*Polygonum persicaria*) and water piper (*Polygonum hydropiper*) herb gathered in the suburbs of Voronezh. A difference was found in the composition of these plants and soil from their habitat; the biological absorption coefficients for the substances in the plants were calculated.

Key words: lady's thumb, Polygonum persicaria L., water piper Polygonum hydropiper L., herb, elemental composition, chromatography-mass spectroscopy.

REFERENCES

- 1. Takhtadzhyan A.L. Magnoliofitov system. Leningrad: Nauka, 1987; 439 (in Russian).
- 2. Kyosev P.A. Medicinal plants: the most complete directory. Moscow: Eksmo, 2011; 944 (in Russian).
- 3. Minkina T.M., Burachevskaya M.V., Chaplygin V.A. Accumulation of heavy metals in the environment, soil plant in a dirt. Scientific Journal of the Russian Research Institute of melioratsii, 2011; 4 (04): 1–17 (in Russian).
 - 4. Perelman A.I. Geochemistry of the landscape. Moscow: Visshaya shkola, 1975; 392 (in Russian).
- **5.** Komarova N.V., Morozova O.V. A method for determining aromatic aldehydes and phenol carbonic acids in the brandy, cognac spirtahi aged wines by capillary electrophoresis. Pat. 2350939 Russian Federation IPC G01N27 / 26. Applicant and patentee Voronezh Limited Liability Company «VINTEL» N° 2007132862/28; appl. 24.08.2007; publ. 27.03.2009 (in Russian).