Control of organic impurities in antibiotics

DOI: https://doi.org/10.29296/25419218-2024-01-04
Issue: 
1
Year: 
2024

E.L. Kovaleva, K.S. Arkhipova, O.O. Terentieva
Scientific Centre for Expert Evaluation of Medicinal Products, Petrovsky Blvd, 8/2, Moscow, 127051, Russian Federation

Introduction: the international, as well as Russian Pharmacopoeia criteria for organic impurity assessment are not applicable to medicinal products obtained by fermentation, therefore the setting of limits for product-related impurities in antibiotics is not regulated by any commonly shared rules. The aim of the study was to analyse and summariese pharmacopoeial requirements for and methodological approaches to organic impurities control in active substances and finished products of semisynthetic antibiotics, peptide antibiotics, and antibiotics obtained by fermentation. Material and methods: the authors analysed the requirements for organic impurities control, as established by the leading world pharmacopoeias and the State Pharmacopoeia of the Russian Federation, using the example of three different groups of antibiotics (semisynthetic antibiotics, antibiotics obtained by fermentation, and peptide antibiotics). The study used comparative analysis and content analysis methods. Results: the study demonstrated that the product-related impurity profiles of the analysed active substances and corresponding finished products often differ significantly across the leading pharmacopoeias, either qualitatively or quantitatively, and do not necessarily comply with the EMA Guideline on setting specifications for related impurities in antibiotics. The methodological approaches to product-related impurity control also differ a lot in terms of pharmacopoeial reference standards used, accelerated stability studies, etc. Conclusion: the complex composition of product-related compounds does not always allow for their unambiguous classification as either impurities or active moieties (e.g. in the case of bleomycin). Most Russian Pharmacopoeia antibiotic monographs are harmonised with the European Pharmacopoeia (Ph. Eur.), which is fraught with problems regarding reference standards (RSs) use, since the composition of Ph. Eur. RSs includes both the active substance and several (sometimes up to 8) impurities. The Russian Pharmacopoeia monographs on antibiotics obtained by a process involving the fermentation stage, include the abnormal toxicity test, which seems redundant in comprehensive impurity control, at least for semisynthetic antibiotics.

Keywords: 
semisynthetic antibiotics
peptide antibiotics
antibiotics obtained by fermentation
product-related impurities
non-product-related organic impurities
impurity reference standards
requirements of leading pharmacopoeias.

References: 
  1. Jiang Yu, Xia Jun-Ping, Yang Jian-Hong, Zhang Zhe-Feng, Hu Chang-Qin, Zhang Zhi-Rong. Guidelines and strategy of the International Conference of Harmonization (ICH) and its member states to overcome existing impurity control problems for antibiotics in China. Chinese J. of Natural Medicines. 2015; 13 (7): 498–506. Doi.org/10.1016/s1875-5364(15)30044-3.
  2. Ковалева Е.Л., Архипова К.С., Булова Е.А., Стралковская А.А., Терентьева О.О. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2022; 12 (3): 263–76. [Kovaleva E.L., Arhipova K.S., Bulova E.A., Stralkovskaya A.A., Terentieva O.O. Control of Organic Impurities in Semisynthetic Antibiotics. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products.Regulatory Research and Medicine Evaluation. 2022; 12 (3): 263–76. https://doi.org/10.30895/1991-2919-2022-12-3-263-276 (in Russian)]
  3. Birkinshawd J.H. The chemistry and biochemistry of streptomycin and related compounds. J. of Pharmacy and Pharmacology. 1951; 3 (1): 529–46.
  4. Ulrike Holzgrabe, Cees-Jan Nap, Nathalie Kunz, Stefan Almeling.Identification and control of impurities in streptomycin sulfate byhigh-performance liquid chromatography coupled with mass detection andcorona charged-aerosol detection. J. of Pharmaceutical and Biomedical Analysis. 2011; 56 (2): 271–9.
  5. Granados O., Meza G. A direct HPLC method to estimate streptomycin and its putative ototoxic derivative, streptidine, in blood serum: application to streptomycin-treated humans. J. of Pharmaceutical and Biomedical Analysis. 2007; 43: 625–30.
  6. Salika Jeelani, Nadejda Soukhova. Development and validation of a stability indicating HPLC method for organic impurities of erythromycin stearate tablets. J. of Pharmaceutical and Biomedical Analysis. 2021; 195: 113858.
  7. WHO model list of essential medicines. 22nd list, 2021. World Health Organization 2021. URL: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02.
  8. Sung Hak Lee, Jaekyu Shin, Jae Mook Choi,Eun Young Lee, Dal Hyun Kim, Jung-Woo Suh, Jun Hwan Chang. The impurities of capreomycin make a difference in thesafetyandpharmacokinetic profiles. International J. of Antimicrobial Agents. 2003; 22: 81–3. Doi.org/10.1016/s0924-8579(03)00124-9
  9. Guozhu Liu, Baolei Luan, Guiting Liang, Libo Xing, Liang Huang, Changyun Wang, Ying Xu. Isolation and identification of four major impurities in capreomycin sulfate. Journal of Chromatography A. 2018; 1571: 155–64.Doi.org/10.1016/j.chroma.2018.08.015.
  10. Якупов И.Ю., Кулешова С.И., Симонова Е.П., Демидов А.С. Применение ион-парной хроматографии для определения компонентов и родственных примесей капреомицина сульфата. Ведомости Научного центра экспертизы средств медицинского применения. Регуляторные исследования и экспертиза лекарственных средств. 2023; 13 (2–1): 271–82. Doi.org/10.30895/1991-2919-2023-451 [Yakupov I.Yu., Kuleshova S.I., Simonova E.P., Demidov A.S. Ion-Pair Chromatography for the Determination of Capreomycin Sulfate Components and Related Substances. Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. Regulatory Research and Medicine Evaluation. 2023; 13 (2–1): 271–82. https://doi.org/10.30895/1991-2919-2023-451 (in Russian)]
  11. Белькова Ю.А., Козлов Р.С., Кречикова О.И., Сухорукова М.В. и др. Эффективность и безопасность местного использования комбинации бацитрацина и неомицина в сравнении с хлорамфениколом в терапии неосложненных хирургических инфекций кожи и мягких тканей у взрослых амбулаторных пациентов. Клиническая микробиология и антимикробная химиотерапия. 2013; 15 (2): 131–42. [Belkova Y.A., Kozlov R.S., Krechikova O.I., Sukhorukova M.V. et al. Comparative Efficacy of Topical Combination of Bacitracin and Neomycin vs. Chloramphenicol in the Treatment of Uncomplicated Mild to Moderate Surgical Skin and Soft Tissue Infections In Adult Out-patients. Clinical Microbiology and Antimicrobial Chemotherapy. 2013; 15 (2): 131–42 (in Russian)]
  12. Suleiman Ahmed Suleiman, Fan Song, MengxiangSu, TaijunHang, Min Song. Analysis of bacitracin and its related substances by liquid chromatography tandem mass spectrometry. J. of Pharmaceutical Analysis. 2017; 7 (1): 48–55. Doi.org/10.1016/j.jpha.2016.06.001